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Application of Quadrature Rules 
for Cauchy-Type Integrals to the 

Generalized Poincare-Bertrand Formula 
By N. I. loakimidis 

Abstract. The classical Poincare-Bertrand transposition formula for the inversion of the order 
of integration in repeated Cauchy-type integrals is generalized in accordance with a new 
interpretation of Cauchy-type integrals. Next, the Gauss-Jacobi quadrature rule is applied, in 
a particular case of the generalized Poincare-Bertrand formula, to both members of this 
formula and it is proved that this formula still remains valid (after the approximation of the 
integrals by quadrature sums). Two simple applications of this result, one concerning the 
convergence of a quadrature rule for repeated Cauchy-type integrals, and the other the 
numerical solution of singular integral equations, are made. Further generalizations and 
applications of the present results follow easily. 

1. Introduction. A classical formula in the theory of Cauchy-type principal value 
integrals is the Poincare-Bertrand transposition formula (see, e.g., [5], [17]) for the 
inversion of the order of integration in repeated integrals: 

(1) fb 1 [fbft ) dtj dx 

T 'f (Y, y) + f[fb (x Y)(t- X) dx] dt. 

In this formula, f(x, t) is a Holder-continuous function with respect to both its 
variables, but it may have weak power singularities near the endpoints a, b of the 
integration interval [16]. The Poincare-Bertrand formula has been proved useful in 
many applications of Cauchy-type integrals and the corresponding singular integral 
equations. 

In a recent paper, Lifanov [16] has proved the Poincare-Bertrand formula and 
generalized it to arbitrarily many dimensions by using a new approach, namely the 
approximation of the integrals in this formula by quadrature sums (based on 
appropriate quadrature rules for Cauchy principal value integrals with equispaced 
nodes) and the use of the convergence property of these rules to the corresponding 
integrals. 

Here, inspired by the work of Lifanov, we will prove the validity of the Poincare- 
Bertrand formula when the Gauss-Jacobi quadrature rule is used for the approxima- 
tion of the integrals in both sides of this formula (with the same number of nodes n). 
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We will use a generalized (and most probably new) form of the Poincare-Bertrand 
formula, which will be derived in the next section, the classical formula (1) being just 
a special case of our formula. 

Since in several cases Cauchy principal value integrals are approximated by 
quadrature sums, the present results seem interesting. Two applications, the first one 
concerning the proof of convergence of quadrature rules for repeated Cauchy 
principal value integrals and the second one concerning the numerical solution of 
Cauchy-type singular integral equations, will also be made. 

2. The Generalized Poincare-Bertrand Formula. In a recent paper [11] we have 
generalized the classical principal value interpretation of Cauchy-type integrals 
along the integration interval. This generalization led to the introduction of a new 
class of Cauchy-type integrals, denoted by the symbol (C)+. For this class of integrals 
it was proved that [11] 

(2) (c)f (t) dt = Cf (x) + bf (t) dt. 

By taking into account this definition, we easily obtain 

b___ rbf (X, t) rbf (t t) - f(y, t) d 
(3) ( - c) x _ [(c)f t( x dt ] dx =-C2 2t( y, y_) + Cl t ydt 

b 1 Jbf(X, t) 
+fb ff( )dtj dx. 

ax - a t- x 
If we invert the order of integration in the same repeated integral, we find 

(4) (c)fb[(c)fb (x f(X,t) d]d 
(4) f [ f x - )(t -) dx] dt 

= a(c) t [ a c)( 1 - !)f(x,t) dx dt 

jbf (t t) -f (y, t) b f(x, t) 
= a dt + -y(gt-) dxj dt, 

since 

(5)11 
1 _ 1A 

(x- y)(t -x) t-y x -y x - t 

Finally, by comparing the right-hand sides of (3) and (4) and taking into account the 
Poincare-Bertrand formula (1) in its classical form, we obtain the generalized 
Poincare-Bertrand formula: 

(6) (c) fb 1 [(c)f bf(X ) dt 1 dx 

-(7T 
2 

+ C2V(y y) + (c) b[( c)fb f(x, t) 
dx] dt. 

Of course, for c = 0 (6) reduces to (1). As far as we know, the above generalization 
of the Poincare-Bertrand formula is new. 
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3. Application of Quadrature Rules. In this section, we will prove that the 
generalized Poincare-Bertrand formula remains valid (under appropriate conditions) 
if the integrals in both sides of it are approximated by quadrature sums. Of course, 
the present results also hold true for the classical Poincare-Bertrand formula (1), a 
special case of (6). 

Although the present results can be modified to apply to many quadrature rules, 
we will consider only the Gauss-Jacobi quadrature rule. (A special case of this rule is 
the Gauss-Chebyshev quadrature rule.) For Cauchy-type principal value integrals, 
the Gauss-Jacobi quadrature rule was proposed by Chawla and Ramakrishnan [1]. 
For ordinary integrals this rule has the form 

n 

(7) ]w(t)g(t) dt = E Aing(tin) + En, 
-1 ~~~i=l 

where w(t)= (1 - t)a(1 + t), and the tin are the roots of the Jacobi polynomial 

Pn' )(t). We shall also need the rule 
n-1 

(8) fw*(t)g(t) dt = E Bkng(xkn) + En, 
-1 k=1 

where w*(t) = [w(t)]1l and the Xkn are the roots of Pn(-,4'-)(x). In our discussion, 
the parameters a and /3 are related by the equation [9, Eq. (43)] 

(9) K = -(a + /) = 1, -1 <a,a< 0. 

For Cauchy-type integrals, the quadrature rules (7) and (8) are modified as [1], [7], 
[11] 

(10) (c)f1w(t) (t) ydt = EA - cw( ) g Y) 

+En y Y tin, = 1(1)n, 

(11) (-c)41W*(t) g(t) n- g(Xkn) n_1[llcw{ii)(gy) 
t_ ydt = E Bkn a + cwy|)( gy) 

+En9 y # Xkn, k = l(l)(n - 1), 

where the Jacobi functions of the second kind l($Y, 8)(y) are defined by 

(12) wIII 8)(y) = f1W(t) mP ( ) dt. 

Here we are interested in the special value of c, denoted by c, defined by [9, Eq. 

(56)] 
(13) c = -7Tcot vra = v cot '4, 
where (9) is also taken into account. In this case, since [13, Eq. (2.6)] 

( 14) II 
'n) (y) = CW(y)p (a') (y) + 2 sin 

(- ) 

(10) takes the simpler form (see also [9, Eq. (20)]) 

(1W tJt Y - in tin y- 2sin 7Ta pn(a,)(y) 
g(y) 

+En, y tin, 1 = 1(1)n. 
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Similarly, since 

(16) ll ( - a - n- (y) = -cw*(y)Pn-_ 1 (y) sin__ 

(11) takes the simpler form (see also [9, Eq. (31)]) 

g() n-i1 (~) 2 Pn,a i) (y) 
(17) ( 1c)fW*(t) g(t) dt = E BnXkn _ 

2 7 

k=1 Xnn1Y sm) 

+En14, 'A Xkn, k = l(1)(n - 1). 

Now, taking f(x, t) = w*(x)w(t)g(x, t), we can rewrite the generalized 
Poincare-Bertrand formula (6) as 

(18) (-c)f W*(,) (x) w(t)g(x, 'dt) dx 

= (7T 2 + c2)g(y, y) +(c)w( t) [(-c)(1 w*(x)g(x,t) dx dtt (~~~2 ~ ~ ~ L~~-1~ (- y)(t - x)dxdt 

g(x, t), of course, being assumed a Holder-continuous function along [-1,11. 
By taking into account (14) for n = 0 and (16) for n = 1 (together with (12)), that is, 

~~fl w(t) ri W *(x ) 2______ 0 (19) M t ()dt = 0, (9)j dx = sin Ta (Y) 

as well as (5), we rewrite (18) as 

(20) () (X) [jw(t) g(x, t) - g(x, 
) dt dx 

= _(2 + &2)g(v y) 

x (W*(x)[ g(x, t) -g(y, t) g(x - t)-g(t, t) 
)jdx 

+ 2T [p /)(y)g(y t)a-)(t)g(t t)] dt. 
sin 7Ta 

It can be directly seen that, instead of applying the aforementioned Gauss-Jacobi 
quadrature rules directly to (18), it is preferable, but equivalent, to apply them to 
(20), which was proved equivalent to (18). Now, by applying (7) and (17) to the 
left-hand side I, of (20), we find 

(21) [InA- 1tin - 9Xkn9Xn 
(21) II = E: n Bkn 1: Ai g(Xkn tin) -g(xkn, Xkf) 

k-iXn -Y Yi k k= 1 LkYi =1 i k 

sin7 PY p .(y) E Ain -y + E 
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In a similar way, by applying (8) and (15) to the right-hand side Ir of (20), we obtain 
after some simple calculations 

n A 
(22) Ir = _(2 + -2)g(y, y) + E in 

i=l in 

nXf t(kn, in) - g(Y, tin) _ g(Xkn, tin) - g(tin, tin) ] 
\k l1 Xknl - Y Xkf-tn] 

+ 27r[piTa )(y)g(y, tin) - p1Ntin)9(tin, tin)]) + En 

Now let I, = I, but without the error term and Ir = Ir also without the error term. 
We will prove that 

(23) I= Ir 

To this end, we apply the quadrature rules (15) and (17) to (19). (These rules are 
exact in this special case.) Then we obtain 

(24a) tin_ y 2sia (y) 

-iXk -in -Y 2sin iT Pn , A ( )(y 

(24b) sin iT s7a [ ( Y) ai /t)( 

Furthermore, fory = Xkn and tin, respectively, we find 

(25) E 09tFn B - 2= P(G")(tin). 
i1 tin Xkn k =i Xkn tin SM iae 

By taking into account the definitions of I, and Irg as well as (24) and (25), we 
observe directly that (23) holds true, provided that the following relation is valid 

(26) .2 r Pn( a,,)(y) 
n 

Ain = 2+ C2 

Pn( (y)i=i tin - 

But this relation, which (because of (24a)) reduces to 

IT2__ = 2 + 2 (27) 2 IT +C, 
sin T<a 

is valid, as can easily be verified from (13). 
Therefore, it was proved that the generalized Poincare-Bertrand formula (6) 

remains valid (from the numerical point of view) in the case when the Gauss-Jacobi 
quadrature formula (equivalently, the Gauss-Chebyshev quadrature formula for (1)) 
is applicable and it is applied to both members of (6). This was proved in the case 
when K = -(a + /) = 1, but it can also be proved for K = 0. Then, -1 < a < 0 < / 
< 1 or -1 < / < 0 < a < 1 (with a = -/3 or K = -(a + /3) = 0), but (13) holds stil 
true. Moreover,- the same-result- can- be proved- for other selections of the- quadrature- 
rule (e.g., for the Lobatto-Jacobi quadrature rule). In the next two sections, we will 
apply this result to two interesting problems. 
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4. A Convergence Result in Numerical Integration. For a = ,B = - 2 (whence 
c = 0) and g(x, t)= h(t), independent of x, the Poincare-Bertrand formula (18) 
takes the form 

(28) f (1x2) [?(1 t 2)/h(t) dt] dx 

h-17h(y) +1r_ w(t)h(t) dt, 

because of (5), and 

(29) fi(l x )dx = 

a special case of the second of (19). It is well-known that the Gauss-Chebyshev 
quadrature rule converges for continuous integrands; therefore, it converges for 
Hblder-continuous integrands h (t) too. This means that if we apply this quadrature 
rule to the right-hand side of (28), we have convergence for n -o o. But we have 
proved in the previous section that for a particular value of n, the same numerical 
results are obtained if the corresponding forms of a Gauss-Jacobi quadrature rule 
are applied to both sides of (20). This means that if we apply the Gauss-Chebyshev 
quadrature rule (with n nodes for the weight function (1 - t2)-1/2) to the approxi- 
mation of the inner Cauchy principal value integral and a similar quadrature rule 
(but with n - 1 nodes for the weight function (1 _ x2)1/2) to the approximation of 
the outer Cauchy principal value integral in the left-hand side of (28), then we obtain 
a convergent sequence (as n -3 oo) of quadrature rules for this repeated Cauchy 
principal value integral. (Of course, h(t) has to be assumed Holder-continuous; 
otherwise, the inner Cauchy principal value integral is not defined in general.) 

The above convergence result is very strange since, as is well known, Gaussian 
quadrature rules for Cauchy principal value integrals converge for integrands 
possessing a continuous derivative [4], [12] and not being simply Holder-continuous 
functions. For H61der-continuous functions, convergence was proved by Elliott [2] 
only subject to very strict assumptions for the Gaussian quadrature rule used and, 
furthermore, for appropriate subsequences of the positive integers and not simply as 
n - oo as is the case here. On the other hand, Tsamasphyros and Theocaris claimed 
that the Gauss-Jacobi quadrature rule for Cauchy principal value integrals converges 
as n -s o for Holder-continuous functions (without additional restrictions), but 
their results are not justified. (More explicitly, the crucial error in the proof of [18] 
seems to be in the second of inequalities (29), whereas in the proof of [20] it is in the 
argumentation after Eq. (11), which does not take into account the roots tin of 

Pna,)(t) or, equivalently, the poles of *t()(t)1Pn()(t) along the integration 
interval.) 

5. Numerical Solution of Singular Integral Equations. The result proved in Section 
3 can also be used in the numerical solution of Cauchy-type singular integral 
equations in the same way that the Poincar6-Bertrand formula can be used in the 
solution of a dominant Cauchy-type singular integral equation of the first kind 
(inversion of a Cauchy-type singular integral) [5]. 
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Let us consider again (18) with g(x, t) = h(t), independent of x. In this case, 
taking into account the second of (19), and (5), as well as the fact that 

(30) P(a )(y) = i(y+a-a), a + B= -1, 

we find from (18) 

(31) ( l w( ) w()h, dt] dx + sin f|w(t)h(t) dt 
-1 x -y J 

- x sin7Ta J 

- _(.2 + 92)h(y) 

By applying the appropriate Gauss-Jacobi quadrature rules to the left-hand side of 
(31) fory = tin (1 = 1(1)n), we obtain 

(32 An n-1nh(in 
(32) E1 A ~in k=1 (tin - Xkn )(t,n - Xkn) sinma ]h(tin) 

- 

(v.2 + c2) h(tn) 
1 = 1(1)n. 

This is the fundamental quadrature formula for the numerical solution of the 
dominant Cauchy-type singular integral equations of the first or the second kind 
(but with constant coefficients and index K = 1). For a = ,B = - 2 (whence c = 0), 
(32) reduces to 

n 1~~~~k 
(33) A1 Bkfl + 77 h(tin~) ='rh( tln) 1 = 1(1)n. 

i=1 Lk=1 (tin - Xkn)(tln - Xkn) ] 
This equation was proved by the author [14] and was the fundamental equation 

for the proof of the equivalence of the numerical methods for the solution of a 
Cauchy-type singular integral equation and the equivalent Fredholm integral equa- 
tion of the second kind. (The results of [14] were taken into account by Gerasoulis 
and appeared again in [6].) The general case of the Gauss-Jacobi quadrature rule, 
leading to (32), was considered in [9] and, independently, in [19], whereas further 
generalizations of the results of [14] were made by Elliott [3] and by the author 
[8]-[10], [15]. In any case, these results can be obtained from the developments of 
this paper as was already explained in sufficient detail in the cases of the Gauss- 
Chebyshev and the Gauss-Jacobi quadrature rules. 
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